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a b s t r a c t 

Hippocampal neurodegeneration, a primary component of Alzheimer’s disease pathology, relates to poor 

cognition; however, the mechanisms underlying this relationship are not well understood. Using a sam- 

ple of cognitively normal older adults and individuals with mild cognitive impairment, this study aims to 

determine the topological properties of functional networks accompanying hippocampal atrophy in aging, 

along with their association to cognition and clinical progression. We considered two conceptually differ- 

ing topological properties: redundancy (the existence of alternative channels of functional commutation) 

and local efficiency (the efficiency of local information exchange). Hippocampal redundancy, but not lo- 

cal efficiency, mediated the association between low hippocampal volume and low memory in both the 

whole sample and in ß-amyloid positive participants. Additionally, participants with high hippocampal 

volume, redundancy, and memory clustered separately from those with low values on all three measures, 

with the latter group showing higher conversion rates to dementia within three years. Together, these re- 

sults demonstrate that reduced hippocampal redundancy is one mechanism through which hippocampal 

atrophy associates with memory impairment in healthy and pathological aging. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Alzheimer’s disease (AD) characteristic neuropathology, extra-

cellular plaque deposits of ß-amyloid (Aß) and neurofibrillary tan-

gles of hyperphosphorylated tau, accumulates during both healthy

aging and mild cognitive impairment (MCI), and is accompanied by

neurodegeneration and cognitive decline ( Jack et al., 2013 ). Neu-

rodegeneration, though not specific to AD ( Jack Jr et al., 2018 ), has

critical effects on cognition ( Apostolova et al., 2012 ; Barnes et al.,

2009 ; Frankó and Joly, 2013 ; Jack et al., 20 0 0 ; Morra et al., 2009 ).
Abbreviations: AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild cog- 

nitive impairment; Aß, beta-amyloid; EF, executive function. 
∗ Corresponding author at: University of North Carolina at Chapel Hill, 130 Mason 

Farm Road, Chapel Hill, NC 27599, USA. Tel: (919) 843-8256, Fax: (919) 843-4456 

E-mail address: eran_dayan@med.unc.edu (E. Dayan). 
∗∗ Data used in preparation of this article were obtained from the Alzheimer’s Dis- 

ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in- 

vestigators within the ADNI contributed to the design and implementation of ADNI 

and/or provided data but did not participate in analysis or writing of this report. 

A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/ 

wp-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 
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Hippocampal atrophy in particular has been consistently asso-

ciated with worse memory performance in cognitively normal

(CN) individuals and in pathological aging ( Golomb et al., 1993 ;

Grundman et al., 2002 ; Huang et al., 2019 ; Nathan et al., 2017 ;

O’Shea et al., 2016 ; Peng et al., 2015 ). Higher rates of atrophy

are observed in later AD stages and in individuals with progres-

sive cognitive decline as compared to those who remain stable

( Apostolova et al., 2012 ; Barnes et al., 2009 ; Frankó and Joly, 2013 ;

Jack et al., 20 0 0 ; Morra et al., 20 09 ). However, the functional

mechanisms through which atrophy relates to impaired cognition

remain uncertain. 

Our primary objective was to determine whether topolog-

ical properties of functional brain networks underlie the re-

lationship between atrophy and cognition in older adulthood.

Focusing on the hippocampus as one of the earliest sites of

AD pathology ( Harris et al., 2010 ), we considered two theoret-

ically opposing functional properties through which hippocam-

pal volume may relate to memory function: redundancy ver-

sus efficiency ( Fig. 1 ). Redundancy, present in numerous bio-

logical systems, provides robustness to the system in the event

of failure of a specific element through the existence of al-

https://doi.org/10.1016/j.neurobiolaging.2021.09.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuaging.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neurobiolaging.2021.09.002&domain=pdf
mailto:eran_dayan@med.unc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.neurobiolaging.2021.09.002
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Fig. 1. Study hypotheses. A. Hypothesized mechanism through which hippocampal atrophy relates to memory impairment. B . Depiction of topological properties considered. 

In low redundancy or low local efficiency networks, degeneration of a node results in no paths between nodes i,j . In high redundancy and high local efficiency networks, 

alternate paths exist between nodes i,j. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ternative channels of communication ( Billinton and Allan, 1992 ;

Glassman, 1987 ; Navlakha et al., 2014 ; Tononi et al., 1999 ). On the

other hand, local efficiency, an important property in small-world

networks, refers to the efficiency of local information exchange,

with higher local efficiency contributing to a lower cost of informa-

tion flow ( Achard and Bullmore, 2007 ; Latora and Marchiori, 2001 ;

Rubinov and Sporns, 2010 ). 

As a network property, redundancy is computed as the sum

of direct and indirect paths (edges) between nodes in a net-

work ( Di Lanzo et al., 2012 ; Langella et al., 2021 ; Leistritz et al.,

2013 ; Sadiq et al., 2021 ). Whole-brain redundancy declines in aging

( Sadiq et al., 2021 ), whereas hippocampal redundancy specifically

benefits memory in aging and is reduced in MCI ( Langella et al.,

2021 ). In contrast to redundancy’s emphasis on indirect connec-

tions, local efficiency refers to the efficiency of communication be-

tween neighboring nodes (i.e., those with direct paths). Local effi-

ciency is lower in older adults as an averaged whole-brain prop-

erty, in specific functional networks (e.g., default mode network),

and regionally (e.g., hippocampus) ( Achard and Bullmore, 2007 ;

Cao et al., 2014 ; Geerligs et al., 2015 ). Therefore, we hypothesized

that reduced redundancy or loss of local efficiency may underlie

the relationship between hippocampal atrophy and cognitive im-

pairment. 

Secondly, we examined the moderating effects of Aß burden

on these relationships. Higher Aß burden, a more specific AD

biomarker ( Jack Jr et al., 2018 ), is also related to memory impair-

ment in healthy aging and MCI ( Huang et al., 2019 ; Nathan et al.,

2017 ). Therefore, individuals with greater pathological burden may

show differential relationships between volume, function, and cog-

nition. Finally, neurodegeneration itself is a poor predictor of con-

version to AD, but we reasoned that the combination of structural,

functional, and cognitive measures may aid in predicting clinical

outcomes. To that end, we assessed whether such a combination

relates to subsequent dementia conversion. In sum, we aimed to

elucidate whether topological network measures, either via robust-

ness and redundancy or through efficiency of communication, are

mechanisms through which atrophy impacts cognitive function. 

2. Materials and methods 

Our analytic plan involved both hypothesis- and data-driven

methods to test our primary aims. We first employed a hypothesis-
driven approach by testing whether topological properties (derived

from resting-state fMRI, rs-fMRI) mediated the relationship be-

tween volume (derived from structural MRI) and cognition. Next,

we employed a data-driven approach, using k-means clustering on

the variables of interest (structure, function, cognition) to ascertain

whether results were consistent with our hypothesis-driven tests.

Groups resulting from the clustering analysis were compared us-

ing survival analysis to evaluate differences in future clinical status,

chosen to assess the clinical relevance of the selected variables. 

2.1. Dataset 

Data were obtained from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) database (adni.loni.usc.edu), a longitudinal

multi-site study launched in 2003 and led by Principal Inves-

tigator Michael W. Weiner, MD. For up-to-date information, see

www.adni-info.org. Study visits were approved by each site’s lo-

cal IRB. All participants provided informed consent. The follow-

ing diagnostic inclusion criteria were established by ADNI: CN par-

ticipants have no subjective memory concern or objective impair-

ment, clinical dementia rating (CDR) = 0, Mini-Mental State Exam

(MMSE) ≥ 24, non-depressed, non-MCI, non-demented; MCI par-

ticipants have a subjective memory concern and objective memory

impairment, CDR = 0.5, MMSE ≥ 24, no significant impairment in

other cognitive domains, preserved activities of daily living, non-

demented. CN and MCI participants from the ADNIGO/2 protocol

between 60 and 90 years old with available rs-fMRI, structural

MRI, florbetapir PET, and cognitive composite scores were included

in this study. Functional and structural MRI images were collected

on the same day, and PET images and cognitive measures were

collected within three months of the MRI scan. The first available

timepoint meeting these criteria was used for each participant (ini-

tial n = 116 participants). 

2.2. MRI data acquisition and processing 

MRI scans were acquired on a 3 Tesla Philips Intera scanner (T1-

weighted structural magnetization-prepared rapid gradient echo:

flip angle = 9 degrees, TE = 3.1 ms, TR = 6.8 ms, sagittal plane,

1.0 × 1.0 × 1.2 mm 

3 ; functional gradient echo: flip angle = 80 de-

grees, TE = 30 ms, TR = 30 0 0 ms, 3.31 × 3.31 × 3.31 mm 

3 , eyes

open). Image preprocessing was completed using the Conn toolbox,
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version 18b ( Whitfield-Gabrieli and Nieto-Castanon, 2012 ), running

on MATLAB (R2017b). Preprocessing included realignment and un-

warping, correction of slice-timing, co-registration of functional to

structural images, spatial normalization to MNI space, and segmen-

tation of gray matter, white matter, and CSF. Motion outlier iden-

tification was used to identify and remove volumes with move-

ment greater than 1.5 mm or a global signal Z threshold of 7. Noise

components from white matter and CSF along with six participant-

motion parameters and their first order derivatives were included

as nuisance variables. Signal frequencies below 0.008 Hz and above

0.09 Hz were removed using temporal band-pass filtering. Partici-

pants with greater than 50% of volumes removed due to excessive

motion were excluded from subsequent analyses ( n = 12). 

2.3. Functional network construction and calculation of topological 

measures 

Functional time-series were extracted based on a functionally

defined parcellation template composed of 300 distinct spherical

regions of interest, or nodes, encompassing cortical, subcortical,

and cerebellar regions ( Seitzman et al., 2020 ). Participant-level

correlation matrices were constructed, in which edges represent

Fisher Z transformed correlations between each node. Individual

matrices were binarized at a range of densities retaining the top

2.5%–25% of edges in each network, representing each participant’s

unweighted functional connectivity matrix. As we considered

whole hippocampal volume as our variable of interest, network

measures were calculated for each of the four hippocampal nodes

included in the parcellation (encompassing bilateral anterior and

posterior regions), then averaged to create one hippocampal ROI.

To examine the specificity of any hippocampal effects, analyses

were also conducted for the insula (comprised of eight nodes), a

deep cortical structure which can be reliably segmented with T1

images, yet has slower rates of atrophy than do medial temporal

lobe regions ( Sluimer et al., 2009 ). Network measures were not

related to total volume of white matter hyperintensities, nor did

groups differ in underlying functional connectivity (see Supple-

mentary Methods). A secondary thresholding procedure based

on orthogonal minimum spanning trees was applied in order to

determine the robustness of results to alternative thresholding

methods, yielding consistent results to those from proportionally

thresholded networks (see Supplementary Methods). 

Redundancy: The path array, P , was calculated as the number of

indirect and direct paths between each node pair ( i, j ) with path

length l from each connectivity matrix. The redundancy matrix,

R , was calculated as the sum of the paths between nodes i and

j , up to maximum path length L , set to 4 ( Langella et al., 2021 ;

Sadiq et al., 2021 ). The average of each hippocampal nodal sum

over j of R (hippocampal node, j ) yielded the whole hippocampal

ROI redundancy. 

R ( i, j ) = 

L ∑ 

l=1 

P ( i, j, l ) 

Local Efficiency: Local efficiency, E local , of the hippocampal ROI,

i , was calculated as the average nodal efficiency among the neigh-

boring nodes (where L = 1, and L j,k denotes the shortest path be-

tween nodes j,k ) of node i , excluding itself, where N is the number

of nodes in graph G i , and G i is the subgraph of G that includes all

neighboring nodes of i : ( Rubinov and Sporns, 2010 ) 

E local = 

1 

N 

(
N − 1 

)
∑ 1 

L j,k 
G i G i j,k ∈ G i 
2.4. Regional brain volume 

Regional volume was available through ADNI. FreeSurfer v. 5.1

( Fischl, 2012 ) was used to segment anatomical MRI scans using the

Desikan-Killany atlas and were manually checked for accuracy (full

methods are available through ADNI). All structural MRI scans were

taken on the same day as the rs-fMRI. Scans that failed the qual-

ity check were excluded from this analysis, as that indicates failed

segmentation of the hippocampus ( n = 2). Hippocampal volume

was averaged across hemispheres as there were no hemispheric

differences in either the whole sample, t (101) = 0.16, p = 0.875,

or in MCI participants only, t (74) = 0.18, p = 0.861. The resulting

average volume was normalized by dividing hippocampal volume

by total intracranial volume and multiplied by 10 6 to retain the

original scaling without influencing statistical test output. All par-

ticipant scans passed the insula quality control check. As with the

hippocampus, left and right hemisphere volumes were averaged,

and resulting values were normalized using total intracranial vol-

ume. 

2.5. Florbetapir PET 

Florbetapir PET imaging was available through ADNI for partici-

pants within three months of their MRI scan dates. Mean florbe-

tapir uptake was calculated for cortical gray matter regions, av-

eraged to create a single cortical value, and normalized using a

cerebellar reference region. Participants with normalized florbe-

tapir uptake ≥1.11 were classified as Aß positive (Aß+ ), and those

below 1.11 were classified as Aß negative (Aß-) ( Clark et al., 2011 ;

Joshi et al., 2012 ). Full methods are available through ADNI. 

2.6. Cognitive measures 

We chose two cognitive processes as our outcome measures,

in which deficits are observed throughout AD progression: mem-

ory, the earliest and primary cognitive deficit, and executive

function (EF), which declines later in the disease ( Arnaiz and

Almkvist, 2003 ). Memory (primarily reflecting verbal recall and

recognition) and EF were evaluated using composite measures

calculated using an IRT framework (mean = 0, standard devia-

tion = 1) ( Crane et al., 2012 ; Gibbons et al., 2012 ) (see Supple-

mentary Methods). 

2.7. Statistical analysis 

Raw data were used for statistical analyses and were normal-

ized for visualization. For brevity, statistical results and figures in

the main text are reported using values averaged across densities.

Results from each individual density are included in the Supple-

mentary Materials to illustrate the robustness of findings across

densities. Analyses were completed in both the whole-sample and

in the MCI participants only. Across analyses, a significance level of

p < .05 was used. 

Group differences were analyzed in R using an independent

samples t -test with equal variance assumed for two group compar-

isons, an ANOVA for comparisons involving more than two groups

or when including covariates, and a chi-square test for dichoto-

mous variables. Permutation ANCOVA was used for group com-

parisons of network measures because it is more robust to non-

normality, implemented using the aovperm function from the per-

muco R package ( Frossard and Renaud, 2019 ) (10,0 0 0 permuta-

tions, and with age, sex, and years of education as covariates). Lin-

ear regressions were estimated in R using the lm R function, with

age, sex, and years of education included as covariates of no inter-

est: (1) volume on cognition (memory, EF), (2) volume on network
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Table 1 

Participant characteristics by diagnosis 

CN ( n = 27) MCI ( n = 75) Test statistic p 

Age 75.26 (6.51) 71.85 (6.51) t (100) = 2.33 0.022 

Sex 15F/12M 36F/39M X 2 (1) = 0.20 0.654 

Education 16.19 (1.98) 16.15 (2.68) t (100) = 0.07 0.946 

Aß burden 8 + /19- 43 + /32- X 2 (1) = 5.04 0.025 

MMSE 28.74 (1.10) 27.99 (1.75) t (100) = 2.09 0.039 

Memory 0.99 (0.57) 0.34 (0.59) t (100) = 4.93 < 0.001 

EF 0.87 (0.74) 0.43 (0.92) t (100) = 2.24 0.027 

Standard deviation given in parentheses; age and education given in years. 

Key: CN, cognitively normal; MCI, mild cognitive impairment; EF, executive function 

Bold values denote statistical significance at the p < .05 level, as requested by a reviewer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

measure (redundancy, local efficiency), and (3) network measure

on cognition. Resulting beta-weights were standardized using the

lm.beta R function. 

Mediation models were estimated using the mediation R pack-

age ( Tingley et al., 2014 ) with volume as the predictor, cognition as

the outcome, network measure as the mediator, and age, sex, and

education as covariates of no interest. Effects were estimated using

bootstrapping (10,0 0 0 simulations). In significant mediation mod-

els, Aß was included as a dichotomous moderator of the mediation,

included in the path between the predictor and mediator. Indirect

and direct effects of the model were conditionalized on Aß- and

Aß+ separately. Indirect effects at each level were compared using

bootstrapping (10,0 0 0 simulations). 

K-means clustering was implemented in MATLAB. Values of k

ranging from 2 to 8 were considered. The optimal k was deter-

mined using the silhouette method with 10,0 0 0 iterations and 10

simulations. Distance was measured using city block (Manhattan)

distance, as it is less sensitive to outliers. Since different densi-

ties may result in different cluster solutions, rendering comparison

across densities difficult, only the average density was used. Vari-

ables were normalized for clustering. Three-dimensional clustering

was computed using hippocampal volume, memory, and redun-

dancy. To assess the specific contribution of redundancy, we also

completed two-dimensional clustering using memory and volume. 

Groups resulting from the clustering procedure described above

were compared with a survival analysis, testing the extent to

which the groups differ in rates of conversion to dementia, using

the survival ( Therneau, 2020 ) and survminer ( Kassambara et al.,

2020 ) R packages, based on the Kaplan-Meier method to estimate

survival probability. Groups were compared using a log-rank test.

Participants were examined up to three years following the MRI

visit to determine their conversion status. The earliest time point

was selected if a participant did convert to dementia. If the partic-

ipant did not convert, the latest available time point, up to three

years post scan, was used (average follow-up time: 23.58 months

for the whole sample and 23.94 months for MCI only). In total, 12

participants converted to dementia. 

3. Results 

3.1. Association between hippocampal volume, memory, and 

topological network properties 

The final sample consisted of 102 participants ( Table 1 ). Diag-

nostic groups did not differ in hippocampal volume [ F (1,97) = 0.25,

p = 0.621]. The CN group had higher hippocampal redundancy

than the MCI group [ F (1,97) = 7.48, p = 0.008], but the groups

did not differ in hippocampal local efficiency [ F (1, 97) = 0.12,

p = 0.743] (Table S1). Additionally, there was a positive rela-

tionship between redundancy and local efficiency, indicating that

one does not come at the expense of the other (whole-sample:
ß = 0.40, p < 0.001, R 2 adjusted = 0.135; MCI: ß = 0.38, p = 0.001,

R 2 adjusted = 0.127; Table S2). 

We first tested whether hippocampal volume was associated

with our two cognitive measures. Lower hippocampal volume

was associated with lower memory (whole-sample: ß = 0.38,

p < 0.001, R 2 adjusted = 0.230; MCI: ß = 0.43, p = 0.001,

R 2 adjusted = 0.303; Fig. 2 A) but not to EF (whole-sample: ß = 0.17,

p = 0.102, R 2 adjusted = 0.218; MCI: ß = 0.14, p = 0.276,

R 2 adjusted = 0.249). Next, we examined the relationships of

the topological network measures with volume and cognition

( Tables 2 , S3-S8). Lower hippocampal volume was related to lower

redundancy, and in turn, lower hippocampal redundancy was re-

lated to worse memory performance (but not EF) ( Figs. 2 B, S1-

S2). As with redundancy, lower hippocampal volume was related

to lower local efficiency ( Fig. 2 C). However, local efficiency was not

related to memory or EF. 

3.2. Hippocampal redundancy underlies the hippocampal 

volume-memory relationship 

We then estimated models to determine whether the topologi-

cal properties mediated volume-cognition relationships ( Tables 3 ,

S9-S12). Hippocampal volume exerted a significant effect on

memory through redundancy (whole-sample proportion medi-

ated = 0.20, p = 0.013; MCI only proportion mediated = 0.17,

p = 0.039; Figs. 2 D, S2). Conversely, local efficiency did not me-

diate the hippocampal volume-memory relationship ( Fig. 2 E). Nei-

ther redundancy nor local efficiency mediated the relationship be-

tween volume and EF in either the whole sample or in MCI only,

suggesting a specific role for hippocampal redundancy in memory

ability. 

The prior results suggest that participants with more risk for AD

(i.e., low hippocampal volume), have accompanying low functional

redundancy, which contributes to memory impairment. To test

the hypothesis that individuals with higher rates of AD-pathology

would show different relationships between structural and func-

tional measures, we included Aß as a moderator in the volume-

redundancy-memory mediation model (Tables S13, S14). In the

whole sample, neither the Aß+ (indirect effect: ß = 1.44 × 10 −4 ,

95% CI[-9.16 × 10 −7 , 3.44 × 10 −4 ], p = 0.051; direct effect:

ß = 7.92 × 10 −4 , 95% CI[3.85 × 10 −4 , 1.26 × 10 −3 ], p < 0.001)

nor Aß- (indirect effect: ß = 1.21 × 10 −4 , 95% CI[-2.25 × 10 −6 ,

2.96 × 10 −4 ], p = 0.054; direct effect: ß = 1.25 × 10 −4 , 95% CI[-

3.65 × 10 −4 , 6.82 × 10 −4 ], p = 0.654) effects reached significance,

and the indirect effects were not significantly different from each

other ( p = 0.870). When limiting to MCI participants, however,

redundancy was a partial mediator of the volume-memory rela-

tionship for Aß+ participants (indirect effect: ß = 1.47 × 10 −4 ,

95% CI[4.28 × 10 −6 , 4.00 × 10 −4 ], p = 0.040; direct effect:

ß = 8.12 × 10 −4 , 95% CI[4.08 × 10 −4 , 1.24 × 10 −3 ], p < 0.001;
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Fig. 2. Relationships between hippocampal volume, topological network measures, and memory. A. Whole-sample regression of hippocampal volume on memory composite 

score, with histograms showing distribution of variable values and inset standardized beta coefficients. B. Whole-sample regression of hippocampal volume on hippocampal 

redundancy, and of hippocampal redundancy on memory composite score, with histograms showing distribution of variable values and inset standardized beta coefficients. 

C. Whole-sample regression of hippocampal volume on hippocampal local efficiency, and of hippocampal local efficiency on memory composite score, with histograms 

showing distribution of variable values and inset standardized beta coefficients. D. Mediation results from hippocampal volume-redundancy-memory model. Bold lines 

denote significant paths. E. Mediation results from volume-local efficiency-memory model. Bold lines denote significant paths. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. 

Table 2 

Linear regression output between hippocampal topological measures, volume, and cognition at the averaged density 

Redundancy-volume Redundancy-memory Redundancy-EF 

ß p R 2 ß p R 2 ß p R 2 

All 0.27 0.022 0.025 0.34 < 0.001 0.242 0.17 0.052 0.227 

MCI 0.29 0.039 0.032 0.32 0.002 0.277 0.11 0.280 0.249 

Efficiency-Volume Efficiency-Memory Efficiency-EF 

ß p R 2 ß p R 2 ß p R 2 

All 0.24 0.043 0.009 0.12 0.209 0.138 0.05 0.608 0.198 

MCI 0.34 0.019 0.026 0.10 0.362 0.184 −0.01 0.893 0.237 

Output from analyses using all participants (CN and MCI) and MCI only. 

Key: ß, standardized beta; CN, cognitively normal; EF, executive function; MCI, mild cognitive impairment; R 2 , adjusted R 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proportion mediated: 0.15). Conversely, redundancy was not a sig-

nificant mediator when estimating for Aß- participants (indirect ef-

fect: ß = 4.15 × 10 −5 , 95% CI[-5.78 × 10 −5 , 1.64 × 10 −4 ], p = 0.351;

direct effect: ß = 8.85 × 10 −5 , 95% CI[-4.53 × 10 −4 , 6.97 × 10 −4 ],

p = 0.746), suggesting that the functional redundancy mediation

is specific to individuals harboring AD-pathology. However, the in-

direct effects for Aß+ and Aß- did not differ from one another

( p = 0.288). 

3.3. Low volume, redundancy, and memory predict subsequent 

dementia conversion 

We sought to further explore the relationship between these

variables using a data-driven approach, more specifically cluster-
ing participants based on hippocampal volume, redundancy, and

memory. In our whole sample, a two-cluster solution emerged, in

which one cluster had low redundancy, volume, and memory (low

RVM, n = 50), and the other had high values on all three variables

(high RVM, n = 52). Each cluster was comprised of both CN and

MCI participants, along with Aß- and Aß+ participants ( Fig. 3 A–

B). The low RVM cluster had more MCI participants than the high

RVM cluster [ X 

2 (1) = 6.63, p = 0.010], but the clusters had sim-

ilar proportions of Aß+ participants [ X 

2 (1) = 3.18, p = 0.075].

Additionally, the low RVM group was older [ t (100) = 3.74, p

< 0.001] and had fewer years of education [ t (100) = 1.99,

p = 0.049]. 

The mediation results and cluster characteristics suggest that

the combination of low hippocampal volume and low hippocam-
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Table 3 

Mediation output at the averaged density 

Volume – redundancy – memory 

Indirect effect Direct effect 

ß 95% CI p ß 95% CI p 

All 1.32 × 10 −4 2.40 × 10 −5 , 2.81 × 10 −4 0.013 5.31 × 10 −4 1.83 × 10 −4 , 9.25 × 10 −4 0.004 

MCI 1.08 × 10 −4 2.74 × 10 −6 , 3.00 × 10 −4 0.038 5.34 × 10 −4 1.64 × 10 −4 , 9.20 × 10 −4 0.006 

Volume – local efficiency – memory 

Indirect effect Direct effect 

ß 95% CI p ß 95% CI p 

All 2.29 × 10 −5 -6.06 × 10 −5 , 1.31 × 10 −4 0.562 6.40 × 10 −4 2.87 × 10 −4 , 1.02 × 10 −3 0.001 

MCI -2.58 × 10 −8 -1.38 × 10 −4 , 1.07 × 10 −4 0.968 6.42 × 10 −4 3.11 × 10 −4 , 1.04 × 10 −3 < 0.001 

Volume – redundancy – executive function 

Indirect effect Direct effect 

ß 95% CI p ß 95% CI p 

All 9.63 × 10 −5 -2.27 × 10 −5 , 2.79 × 10 −4 0.122 3.18 × 10 −4 -1.56 × 10 −4 , 7.86 × 10 −4 0.184 

MCI 6.11 × 10 −5 -7.29 × 10 −5 , 3.02 × 10 −4 0.417 2.54 × 10 −4 -3.04 × 10 −4 , 7.62 × 10 −4 0.373 

Volume – local efficiency – executive function 

Indirect effect Direct effect 

ß 95% CI p ß 95% CI p 

All 9.90 × 10 −6 -1.10 × 10 −4 , 1.61 × 10 −4 0.841 4.05 × 10 −4 -8.57 × 10 −5 , 8.88 × 10 −4 0.099 

MCI -3.76 × 10 −5 -2.28 × 10 −4 , 1.68 × 10 −4 0.664 3.53 × 10 −4 -2.12 × 10 −4 , 8.99 × 10 −4 0.207 

Output from analyses using all participants (CN and MCI) and MCI only. 

Key: ß, unstandardized beta; CI, confidence interval; CN, cognitively normal; MCI, mild cognitive impairment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pal redundancy is a risk factor for pathological aging. We sought

additional evidence of this notion by examining rates of conver-

sion to dementia in each of the clusters. Strikingly, no participants

in the high RVM group converted to dementia, whereas all demen-

tia conversions ( n = 12) occurred in the low RVM group. The sur-

vival probability was thus lower in the low RVM cluster than in

the high RVM cluster ( p < 0.001) ( Figs. 3 D, S2). Critically, the two

clusters did not differ in average follow-up time [ t (100) = 1.47,

p = 0.145]. 

Clustering just the MCI participants resulted in similar results,

again finding a low RVM ( n = 35) and a high RVM ( n = 40)

group. The clusters had similar proportions of Aß+ participants

[ X 

2 (1) = 2.58, p = 0.108]. The low RVM group was older than the

high group [ t (73) = 3.43, p < 0.001], but they had similar levels of

education [ t (73) = 1.49, p = 0.141]. Finally, individuals in the low

RVM group were more likely to convert to dementia than those

in the high RVM group ( p = 0.007), with 10 of the 12 partici-

pants who converted to dementia clustering with low RVM. The

two clusters did not differ in average follow-up time [ t (73) = 1.09,

p = 0.281]. 

To test the specific contribution of redundancy to the clustering

approach reported above, we performed a post-hoc examination of

participant clustering using only volume and memory. Because re-

dundancy was positively related to hippocampal volume and mem-

ory (see Section 3.1 ), the residuals from regressing volume on re-

dundancy and from regressing memory on redundancy were used

in the cluster analysis, thereby removing the effect of redundancy

on each variable. The removal of redundancy changed the results

considerably, yielding four groups, between which survival prob-

ability did not differ (whole-sample: p = 0.160; MCI: p = 0.120).

Further, the low VM group contained only four of the 12 convert-

ers in the whole sample and seven of the 12 in the MCI only par-

ticipants, compared to the respective 12 and 10 converters in the

analogous low RVM group. 

 

3.4. Specificity of hippocampal atrophy 

Finally, we examined the relationships between volume, redun-

dancy, and memory in the insula, a deep cortical structure exhibit-

ing a slower rate of atrophy in preclinical stages ( Sluimer et al.,

2009 ), to determine the specificity of hippocampal atrophy and

function ( Fig. 4 ; Tables S15-S17). Insular volume was not related

to memory (whole-sample: ß = 0.14, p = 0.140, R 2 adjusted = 0.144;

MCI: ß = 0.10, p = 0.368, R 2 adjusted = 0.184), nor to insular re-

dundancy (whole-sample: ß = 0.11, p = 0.315, R 2 adjusted = .010;

MCI: ß = 0.10, p = 0.428, R 2 adjusted = 0.025). Insular redundancy

was not related to memory (whole-sample: ß = 0.08, p = 0.396,

R 2 adjusted = 0.131; MCI: ß = 0.02, p = 0.847, R 2 adjusted = 0.175).

Further, insular redundancy did not mediate the relationship be-

tween insular volume and memory in either the whole sample or

MCI only ( p s > 0.628). 

4. Discussion 

Despite widespread findings of hippocampal atrophy across

healthy and pathological aging ( Apostolova et al., 2012 ;

Barnes et al., 2009 ; Frankó and Joly, 2013 ; Jack et al., 20 0 0 ;

Morra et al., 2009 ), the functional mechanisms through which

hippocampal atrophy relates to impaired cognition remain un-

certain. Our data suggest that hippocampal redundancy is one

such mechanism. In CN and MCI older adults, we found that low

hippocampal volume was related to low memory performance,

which was mediated by low redundancy but not local efficiency.

Data-driven clustering methods supported these findings, such

that participants with low volume, redundancy, and memory

clustered together and separately from those with high values

on all three measures. Further, the low RVM cluster included

all of the participants who subsequently converted to demen-

tia. Consistent results were obtained when using an alternative



S. Langella, P.J. Mucha, K.S. Giovanello et al. / Neurobiology of Aging 108 (2021) 179–188 185 

Fig. 3. Characteristics of three-dimensional K-means clustering solution groups. A. Percent of CN and MCI participants within each cluster. B. Percent of Aß- and Aß+ participants 

within each cluster. C. Scatterplot showing the relationship between hippocampal redundancy, hippocampal volume, and memory in each cluster. D. Survival probability for 

each cluster over time. Vertical drop in curve indicates a conversion to dementia. Tick marks represent censoring of a participant (i.e., final timepoint). CN, cognitively 

normal; MCI, mild cognitive impairment; RVM, redundancy, volume, memory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

thresholding method. Overall, these results provide evidence that

low hippocampal redundancy underlies the relationship between

hippocampal atrophy and memory impairment, and that this

presentation of low structure, function, and cognition is a risk

factor for conversion to dementia. 

Our analysis focused on two topological network measures,

redundancy and local efficiency, but only redundancy mediated

the relationship between hippocampal volume and memory. Re-

dundancy supports robustness in cellular and neural networks

( Aittokallio and Schwikowski, 2006 ; Pitkow and Angelaki, 2017 ),

and hippocampal functional redundancy is beneficial for memory

and is reduced in pathological aging ( Langella et al., 2021 ). Re-

taining hippocampal redundancy, then, may be neuroprotective in

early stages of AD. Although a significant direct effect remained

between hippocampal volume and memory, consistent with prior

literature relating hippocampal atrophy to memory impairment

( Golomb et al., 1993 ; Grundman et al., 2002 ; Huang et al., 2019 ;

Nathan et al., 2017 ; O’Shea et al., 2016 ; Peng et al., 2015 ), the sig-

nificant indirect effect through redundancy indicates that memory

impairment is not solely affected by volume loss itself; rather, this

effect is partially explained by changes in hippocampal functional

topology- namely lower redundancy. Interventions targeting hip-

pocampal redundancy, therefore, may mitigate age-related cogni-

tive decline. Such implications should be probed by testing to what

degree redundancy can be increased in older adulthood, for exam-

ple via lifestyle interventions or other modifiable factors known
to affect brain health ( Bugg and Head, 2011 ; Karatsoreos and

McEwen, 2013 ; Ma et al., 2017 ; Olson et al., 2006 ; Piras et al.,

2011 ; Tost et al., 2015 ; Wenger and Lövdén, 2016 ). Significant me-

diation effects were observed in both our combined sample as well

as in just MCI participants. However, only in MCI was there ev-

idence that the role of redundancy may differ as a result of Aß

burden. Although the difference between Aß+ and Aß- effects did

not reach significance, mediation was significant only for Aß+ par-

ticipants, providing initial evidence that redundancy contributes to

low memory in individuals with greater risk for developing AD

(e.g., individuals with MCI who are Aß+ ), but exerts no effect in

less impaired groups. The loss of hippocampal redundancy may

accompany the accumulation of disease pathology. Future work

should further probe potential differences as a function of patho-

logical burden. 

Our results also demonstrate a specificity to the role of hip-

pocampal redundancy. Significant mediation by redundancy was

only observed for the association of memory with hippocampal at-

rophy, not for EF. Whole-brain redundancy, on the other hand, sup-

ports EF in healthy adults ( Sadiq et al., 2021 ). Though hippocam-

pal function is implicated widely in cognition ( Shohamy and Turk-

Browne, 2013 ), given its primary involvement in mnemonic pro-

cesses ( Clark and Squire, 2013 ; Eichenbaum, 2017 ), our findings

show that regional measures of redundancy appear to be selective

in their effects. Additionally, insular redundancy did not mediate

a relationship between insular volume and cognition, suggesting a
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Fig. 4. Relationships between insular volume, redundancy, and memory. Whole sample regression of insular volume on memory composite score (A) , insular volume on insular 

redundancy (B) , and insular redundancy on memory composite score (C) , with histograms showing distribution of variable values and inset standardized beta coefficients. 

D. Mediation results from insular volume-redundancy-memory model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

relatively specific effect of the hippocampus in healthy and early

pathological aging. 

The finding of low and high RVM clusters in our dataset sup-

port our mediation findings that low structure, function, and cog-

nition accompany each other. Further, the combination of low val-

ues on all three variables represents a risk state, with a higher pro-

portion of individuals subsequently converting to dementia. How-

ever, when clustering on volume and memory, and equating re-

dundancy, a more complex four-cluster solution emerged with ill-

defined risk groups. The low VM cluster did not capture the high

proportion of conversions that was achieved when including func-

tional redundancy. Indeed, hippocampal neurodegeneration itself is

not specific to AD ( Jack Jr et al., 2018 ), and atrophy is common

in healthy aging ( Daugherty et al., 2016 ). In our sample, low hip-

pocampal volume was a poor predictor of subsequent dementia

conversion, but when accompanied by hippocampal redundancy,

prediction substantially improves. 

This study has several limitations. Our sample consisted of dis-

proportionately more participants with MCI ( n = 75) than CN

( n = 27) individuals. To address this limitation, analyses were re-

peated using just MCI participants, with results supporting the

same conclusions. However, we did not have a large enough CN

sample to repeat the analyses in just CN participants. The hip-

pocampal volume available for this sample was calculated using

automated segmentation through Freesurfer, though manual trac-

ing is currently the gold standard to minimize bias in estimates

( Schmidt et al., 2018 ). To mitigate this issue, only participants who
passed ADNI’s comprehensive quality control procedures were in-

cluded in this study, though newer methods for hippocampal seg-

mentation should be used to support the current findings. Addi-

tionally, the markers of interest were examined cross-sectionally,

precluding longitudinal assessment of hippocampal atrophy or Aß

accumulation. Future work should also employ longitudinal assess-

ment of functional hippocampal redundancy to elucidate whether

redundancy is malleable across healthy and pathology aging, such

as in response to neuropathology. 

In sum, we find that hippocampal redundancy underlies the re-

lationship between low hippocampal volume and poor memory

performance. Although neurodegeneration is a non-specific risk

factor for AD ( Jack Jr et al., 2018 ), by including this functional cor-

relate of hippocampal atrophy, the ability to differentiate between

stable and converter participants is improved. Topological network

properties are thus critical in understanding the link between at-

rophy and cognitive impairment in preclinical older adults. 
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